Skip to content

Calcolo della somma dei valori della matrice in parallelo con metal swift

Benvenuto nel nostro sito web, ora troverai la soluzione di ciò di cui hai bisogno.

Soluzione:

Mi sono preso il tempo di creare un esempio perfettamente funzionante di questo problema con Metal. La spiegazione è nei commenti:

let count = 10_000_000
let elementsPerSum = 10_000

// Data type, has to be the same as in the shader
typealias DataType = CInt

let device = MTLCreateSystemDefaultDevice()!
let library = self.library(device: device)
let parsum = library.makeFunction(name: "parsum")!
let pipeline = try! device.makeComputePipelineState(function: parsum)

// Our data, randomly generated:
var data = (0...stride * count, options: [])!
// A buffer for individual results (zero initialized)
let resultsBuffer = device.makeBuffer(length: MemoryLayout.stride * resultsCount, options: [])!
// Our results in convenient form to compute the actual result later:
let pointer = resultsBuffer.contents().bindMemory(to: DataType.self, capacity: resultsCount)
let results = UnsafeBufferPointer(start: pointer, count: resultsCount)

let queue = device.makeCommandQueue()!
let cmds = queue.makeCommandBuffer()!
let encoder = cmds.makeComputeCommandEncoder()!

encoder.setComputePipelineState(pipeline)

encoder.setBuffer(dataBuffer, offset: 0, index: 0)

encoder.setBytes(&dataCount, length: MemoryLayout.size, index: 1)
encoder.setBuffer(resultsBuffer, offset: 0, index: 2)
encoder.setBytes(&elementsPerSumC, length: MemoryLayout.size, index: 3)

// We have to calculate the sum `resultCount` times => amount of threadgroups is `resultsCount` / `threadExecutionWidth` (rounded up) because each threadgroup will process `threadExecutionWidth` threads
let threadgroupsPerGrid = MTLSize(width: (resultsCount + pipeline.threadExecutionWidth - 1) / pipeline.threadExecutionWidth, height: 1, depth: 1)

// Here we set that each threadgroup should process `threadExecutionWidth` threads, the only important thing for performance is that this number is a multiple of `threadExecutionWidth` (here 1 times)
let threadsPerThreadgroup = MTLSize(width: pipeline.threadExecutionWidth, height: 1, depth: 1)

encoder.dispatchThreadgroups(threadgroupsPerGrid, threadsPerThreadgroup: threadsPerThreadgroup)
encoder.endEncoding()

var start, end : UInt64
var result : DataType = 0

start = mach_absolute_time()
cmds.commit()
cmds.waitUntilCompleted()
for elem in results {
    result += elem
}

end = mach_absolute_time()

print("Metal result: (result), time: (Double(end - start) / Double(NSEC_PER_SEC))")
result = 0

start = mach_absolute_time()
data.withUnsafeBufferPointer { buffer in
    for elem in buffer {
        result += elem
    }
}
end = mach_absolute_time()

print("CPU result: (result), time: (Double(end - start) / Double(NSEC_PER_SEC))")

Ho usato il mio Mac per testarlo, ma dovrebbe funzionare bene anche su iOS.

Output:

Metal result: 494936505, time: 0.024611456
CPU result: 494936505, time: 0.163341018

La versione Metal è circa 7 volte più veloce. Sono sicuro che si può ottenere una velocità maggiore se si implementa qualcosa come il divide et impera con cutoff o altro.

La risposta accettata è fastidiosamente mancante del kernel che è stato scritto per essa. Il sorgente è qui, ma qui c'è il programma completo e lo shader che può essere eseguito come applicazione a riga di comando swift.

/*
 * Command line Metal Compute Shader for data processing
 */

import Metal
import Foundation
//------------------------------------------------------------------------------
let count = 10_000_000
let elementsPerSum = 10_000
//------------------------------------------------------------------------------
typealias DataType = CInt // Data type, has to be the same as in the shader
//------------------------------------------------------------------------------
let device = MTLCreateSystemDefaultDevice()!
let library = device.makeDefaultLibrary()!
let parsum = library.makeFunction(name: "parsum")!
let pipeline = try! device.makeComputePipelineState(function: parsum)
//------------------------------------------------------------------------------
// Our data, randomly generated:
var data = (0...stride * count, options: [])!
// A buffer for individual results (zero initialized)
let resultsBuffer = device.makeBuffer(length: MemoryLayout.stride * resultsCount, options: [])!
// Our results in convenient form to compute the actual result later:
let pointer = resultsBuffer.contents().bindMemory(to: DataType.self, capacity: resultsCount)
let results = UnsafeBufferPointer(start: pointer, count: resultsCount)
//------------------------------------------------------------------------------
let queue = device.makeCommandQueue()!
let cmds = queue.makeCommandBuffer()!
let encoder = cmds.makeComputeCommandEncoder()!
//------------------------------------------------------------------------------
encoder.setComputePipelineState(pipeline)
encoder.setBuffer(dataBuffer, offset: 0, index: 0)
encoder.setBytes(&dataCount, length: MemoryLayout.size, index: 1)
encoder.setBuffer(resultsBuffer, offset: 0, index: 2)
encoder.setBytes(&elementsPerSumC, length: MemoryLayout.size, index: 3)
//------------------------------------------------------------------------------
// We have to calculate the sum `resultCount` times => amount of threadgroups is `resultsCount` / `threadExecutionWidth` (rounded up) because each threadgroup will process `threadExecutionWidth` threads
let threadgroupsPerGrid = MTLSize(width: (resultsCount + pipeline.threadExecutionWidth - 1) / pipeline.threadExecutionWidth, height: 1, depth: 1)

// Here we set that each threadgroup should process `threadExecutionWidth` threads, the only important thing for performance is that this number is a multiple of `threadExecutionWidth` (here 1 times)
let threadsPerThreadgroup = MTLSize(width: pipeline.threadExecutionWidth, height: 1, depth: 1)
//------------------------------------------------------------------------------
encoder.dispatchThreadgroups(threadgroupsPerGrid, threadsPerThreadgroup: threadsPerThreadgroup)
encoder.endEncoding()
//------------------------------------------------------------------------------
var start, end : UInt64
var result : DataType = 0
//------------------------------------------------------------------------------
start = mach_absolute_time()
cmds.commit()
cmds.waitUntilCompleted()
for elem in results {
    result += elem
}

end = mach_absolute_time()
//------------------------------------------------------------------------------
print("Metal result: (result), time: (Double(end - start) / Double(NSEC_PER_SEC))")
//------------------------------------------------------------------------------
result = 0

start = mach_absolute_time()
data.withUnsafeBufferPointer { buffer in
    for elem in buffer {
        result += elem
    }
}
end = mach_absolute_time()

print("CPU result: (result), time: (Double(end - start) / Double(NSEC_PER_SEC))")
//------------------------------------------------------------------------------
#include 
using namespace metal;

typedef unsigned int uint;
typedef int DataType;

kernel void parsum(const device DataType* data [[ buffer(0) ]],
                   const device uint& dataLength [[ buffer(1) ]],
                   device DataType* sums [[ buffer(2) ]],
                   const device uint& elementsPerSum [[ buffer(3) ]],

                   const uint tgPos [[ threadgroup_position_in_grid ]],
                   const uint tPerTg [[ threads_per_threadgroup ]],
                   const uint tPos [[ thread_position_in_threadgroup ]]) {

    uint resultIndex = tgPos * tPerTg + tPos;

    uint dataIndex = resultIndex * elementsPerSum; // Where the summation should begin
    uint endIndex = dataIndex + elementsPerSum < dataLength ? dataIndex + elementsPerSum : dataLength; // The index where summation should end

    for (; dataIndex < endIndex; dataIndex++)
        sums[resultIndex] += data[dataIndex];
}

valutazioni e recensioni

Apprezziamo che tu voglia sostenere la nostra missione mettendo un commento e apprezzandolo, ti diamo il benvenuto.



Utilizzate il nostro motore di ricerca

Ricerca
Generic filters

Lascia un commento

Il tuo indirizzo email non sarà pubblicato.